lunes, 21 de julio de 2008

regresión y correlación

La regresión estadística o regresión a la media es la tendencia de una medición extrema a presentarse más cercana a la media en una segunda medición. La regresión se utiliza para predecir una medida basándonos en el conocimiento de otra.

tipos de regresión:
Regresión lineal simple
Dadas dos variables (Y: variable dependiente; X: independiente) se trata de encontrar una función simple (lineal) de X que nos permita aproximar Y mediante: Ŷ = a + bX

a (ordenada en el origen, constante)
b (pendiente de la recta)
A la cantidad e=Y-Ŷ se le denomina residuo o error residual.

Regreseión no lineal
En estadística, la regresión no lineal es un problema de inferencia para un modelo tipo:


basado en datos multidimensionales x,y, donde f es alguna función no lineal respecto a algunos parámetros desconocidos θ. Como mínimo, se pretende obtener los valores de los parámetros asociados con la mejor curva de ajuste (habitualmente, con el método de los mínimos cuadrados). Con el fin de determinar si el modelo es adecuado, puede ser necesario utilizar conceptos de inferencia estadística tales como intervalos de confianza para los parámetros así como pruebas de bondad de ajuste.


Correlación
En probabilidad y estadística, la correlación indica la fuerza y la dirección de una relación lineal entre dos variables aleatorias. Se considera que dos variables cuantitativas están correlacionadas cuando los valores de una de ellas varían sistemáticamente con respecto a los valores homónimos de la otra: si tenemos dos variables (A y B) existe correlación si al aumentar los valores de A lo hacen también los de B y viceversa. La correlación entre dos variables no implica, por sí misma, ninguna relación de causalidad (Véase Cum hoc ergo propter hoc).

1 comentario:

aaron dijo...

Cuando se obtiene la ecuación de regresión lineal Y=ax+b, aplicada a la relación lineal entre dos variables, tales como X= kilómetros, Y = costo de transporte, al hacer X=0, matemáticamente seguimos teniendo un costo Y. Pero la lógica dice que si tengo O kilómetros, el costo de transportación de cualquier paquete es cero.